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I. MOTIVATION

Telepresence robots allow people to remotely interact with
others. One of the main applications of these robots is in
assistance tasks. For example, they allow disabled people to
attend events remotely, or caregivers to interact remotely with
people under their care. In particular, this work considers the
application of telepresence robots for elderly care [5] (see
Fig. 1).

However, controlling these systems is a complex task. The
human controller needs to focus on both low-level tasks
(such as controlling the robot) and high-level tasks (such as
maintaining a conversation) at the same time; and this can
lead to a cognitive overload, therefore reducing the attention
that is given to the high-level tasks [7]. For this reason, being
able to interact with these robots using only higher-level
commands is preferable (i.e. Approach a given object, Follow
a given person, etc.) – in this case the robot would then be in
charge of low-level control. This is in fact a necessity if one
considers visually-impaired people as users of the robotic
system.

In all these cases, the robot needs to extract and provide
semantic information about the scenario so that the scene
can be described in human terms to the users, and they can
in turn indicate the robot where to go next for interactions.
This information is represented in the form of a scene
graph based on an ontology, which then allows the robot to
perform automated reasoning and fulfill other downstream
tasks. While the motivation behind the work is semantic
level control of telepresence robots, the same ideas can be
used for many other downstream tasks involving human-
robot interaction.

This work surveys existing research on the automatic
generation of those scene graphs, such as [8], [6], [10],
[9], and investigates their application to telepresence robots.
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Fig. 1: A telepresence robot for elderly care. The robot in
this picture is used to remotely assist with the activities of a
day care centre.

These methods extract a semantic graph for a given image,
composed of the main objects present in the scene and the
relations between them (e.g. Fig. 3). The main problem
identified in these solutions is their inability to take existing
“expert” knowledge about the domain world into account.
Moreover, the existing available datasets for training the
models (such as Visual Genome [3]) are quite noisy, biased
and too general, as a result of how they were collected.

Therefore, a systematic way to specialize these datasets
according to domain needs and improving the semantics of
the output of the model must be devised. The main goal
of this work is thus finding a way to reuse and repurpose
existing scene graph generation models and datasets for spe-
cific robotic applications, and applying additional techniques
that take into account existing domain knowledge of the
application, so that we can improve the performance of a
machine learning model within the reduced scope of a given
problem and ontology. This is precisely what the proposed
OG-SGG methodology sets out to do.

II. KEY METHODS

The proposed pipeline (see Fig. 2) consists of three main
components: a scene graph generation network, a training
dataset filtering and augmentation process, and a network
output post-processing process. These last two processes, the
core of this work’s contribution, make use of pre-existing
expert knowledge defined in the domain ontology, while the
network itself can be adapted from the existing state of
the art with minimal changes according to needs (such as
efficiency).



Fig. 2: Full OG-SGG pipeline. The diagram shows three main components in full detail, along with both internal and external
data flow. The proposed ontology-aware additions are highlighted in green, which include the filter/augmentation component,
and the post-processing component. A pre-existing object detection and scene graph generation component is also included
in the pipeline.

Dataset R@K (k = 1) R@K (k = 8) mR@K (k = 1) mR@K (k = 8)
Training Test 20 50 100 20 50 100 20 50 100 20 50 100

VG-SGG TERESA 27.0 34.7 41.9 23.8 34.8 51.1 19.1 30.6 36.4 29.3 42.7 57.0
VG-SGG (filtered) TERESA 44.7 47.9 53.2 46.5 53.4 66.3 44.0 51.2 53.6 44.7 53.9 60.5
VG-SGG AI2THOR 19.1 24.4 32.1 21.9 27.2 40.5 7.0 11.8 16.2 9.4 15.2 24.6
VG-SGG (filtered) AI2THOR 17.3 28.7 38.7 18.9 33.1 52.5 11.6 21.1 27.9 13.8 28.0 48.3
VG-indoor TERESA 26.1 33.7 40.2 26.0 41.4 56.1 10.5 20.6 25.2 19.8 35.5 53.6
VG-indoor (filtered) TERESA 43.6 45.3 51.8 44.2 51.5 62.8 45.0 52.9 59.6 47.1 57.7 69.3
VG-indoor AI2THOR 18.7 21.4 26.0 22.1 26.5 37.4 9.3 17.7 23.0 12.2 22.3 31.5
VG-indoor (filtered) AI2THOR 21.4 25.7 31.4 24.7 32.9 45.9 14.5 24.1 30.8 16.9 32.5 48.0

TABLE I: Quantitative results.

The scene graph generation network, called VRD-RANS,
was adapted from an existing work [8]; and reimplemented
from scratch due to a lack of publicly available code.
This network was chosen because of its use of semantic
vectors (improving generalization), a single global feature
map instead of the more common RoI pooling approach
(improving runtime efficiency for embedded GPUs used in
robotics), and a novel training strategy that has built-in data
augmentation in the form of negative sampling.

The training dataset filtering and augmentation method
can be summarized as a process that takes a source dataset
and applies a series of ontology-guided transformations.
These include mapping predicates to object properties in
the ontology, discarding (filtering) triplets without a suitable
match, and extracting (augmentation) new inferred triplets
according to the axioms defined in the ontology. Likewise,
output post-processing prunes triplets that are deemed as
inconsistent with said axioms, which are then solved by
selecting the highest scoring candidate triplets that form a
consistent graph.

III. KEY RESULTS

Our code is publicly available online1.
In order to evaluate the effects of the ontology-guided

scene graph generation (OG-SGG) framework, we applied it
to a telepresence robotics use case. Specifically, we utilized
data from the TERESA [5] European Project, which involved
a telepresence robot being used within an elderly day-care
centre. Additionally, we also decided to test another similar
but different robotics scenario provided by the AI2THOR
framework [2] – a near photo-realistic interactable frame-
work for embodied AI agents, with the goal of facilitating
the creation of visually intelligent models and pushing the
research forward in that domain.

We carried out several experiments in order to prove that
OG-SGG delivers the desired performance improvements
in a specific application, when the source dataset used for
training is unrelated to the subject matter (robotics), by virtue
of being collected from general images downloaded from the
internet. Our experiments were carried out by training the
scene graph generation network on a series of training dataset
splits extracted from the Visual Genome (VG) dataset, and

1https://github.com/robotics-upo/og-sgg

https://github.com/robotics-upo/og-sgg
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Fig. 3: Qualitative examples using TERESA and AI2THOR (top to bottom)
Left: Image with object annotations. Center: Network trained on VG-SGG. Right: Network trained on VG-SGG (filtered).

evaluating it on a completely different dataset consisting
of images extracted from our desired source (TERESA or
AI2THOR). The original VG data was used both unmodified
and preprocessed with our proposed filtering/augmentation
method, using a simple ontology created for each test dataset.
In addition, a subset of VG, dubbed “VG-indoor” (only con-
taining indoor images) was also used during the experiment,
in order to observe the effects of using a smaller, coarsely
filtered source dataset.

We make use of the standard metrics for scene graph
generation [4], [6], namely Recall at K (R@K) and Mean
Recall at K (mR@K). These metrics calculate the percentage
of the ground truth relationship annotations that are correctly
generated by the system among the K highest scoring
triplets. mR@K in addition calculates separate values for
each predicate type, which are then averaged; this results in
a less biased picture of the generalization capability of the
system.

Table I shows quantitative results using both training and
both testing datasets. It is worth pointing out that the reported
results for filtered training datasets also contain the post-
processing filter. Full ablation test results can be found in
our paper [1], which also confirms the major improvements
brought by filtering at either end. A significant improvement
in all mR@K variants can be seen when using filtered
datasets, which indicates greater generalization capability in
the network. As for R@K, more modest improvements can
be seen mainly in variants with larger K and k. Smaller
values of those parameters bring about no discernible im-

provement, possibly because more frequent predicates are
more heavily weighted in those variants. These more fre-
quent predicates will be overfitted in models with smaller
generalization capability.

Fig. 3 shows two selected qualitative examples. The graphs
were generated by running the images through the model
and picking the 16 highest scoring generated triplets. The
pruning effects of the post-processing rules can clearly be
seen – certain structures arise in the new graphs, such as
people holding cups or multiple chairs being next to a table.
Limitations can also be seen, such as the lack of depth
perception, or trouble with higher order reasoning (i.e. the
network being unable to understand that an object can either
be on a table or held by a person, but not both).

IV. CONCLUSIONS

While existing scene graph generation networks can theo-
retically output any combination of triplets, OG-SGG is able
to leverage the ontology to reduce the set of possibilities
and thus improve the quality of the generated scene graphs.
Another important observation is that only a small amount
of effort had to be spent in engineering an ontology for
the experiment in order to obtain these results. It can be
explained that OG-SGG leverages the effect that biased
datasets have on neural networks, precisely by creating a
new version of the dataset that is biased in favor of existing
prior knowledge.
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