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Abstract— Designing reliable, effective, and safe robotics
systems for Human-Robot Interaction (HRI) remains still a
major challenge due to the non-symmetrical nature of HRI
and the absence of a comprehensive human model. For a
meaningful interaction is suggested that both participants must
have knowledge of one another. To achieve this an adequate
representation of the other’s belief, intentions, goals, actions,
etc. is necessary. We introduce in this paper the UAivatar sim-
ulation framework that allows for the simulation of various HRI
scenario. It includes a cognitive control for a human character
and a knowledge-based human model that is integrated into the
AI software and control architecture of the operating robot.
Our framework, therefore, extends the robots inner world
model with rich knowledge about humans allowing the robot to
’imagine’ and simulate humans performing everyday activities.

I. BACKGROUND AND RELATED WORK

Robots are steadily becoming a fundamental part of our
daily life. They have the potential to take over everyday
activities at home [1], office [2], health-care [3] or public
places [4]. Since robots will work in close proximity to
human beings interaction, their interaction is inevitable.
Human-Robot Interaction (HRI) is an interdisciplinary field
that studies the dynamic interaction between human beings
and robots.

Simulated environments are great tools to design, test,
and verify such agent models and rightfully it has been
explored in the robotics field for more than 30 years [5]. In
robotics, the typical usages of simulated environments ranges
from design, development, and validation of robotic systems.
Although, the applications can be more straightforward as to
teach students about robots or more demanding/challenging
where robots are trained to perform everyday human activi-
ties.

Naturally, there have been many publications centered
around the development of robotics in which the robot ends
up treated as an isolated agent and very few works have been
done where a human model is provided as an active agent
that can take part in the robot’s world. For example, NVIDIA
Isaac Sim [6] is a very powerful tool for robot development
that can provide randomized human-like avatars that share
the space with the robots. However,it does not support any
kind of active interaction with the robots and they are merely
used for testing collision avoidance algorithms. On the other
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hand, there is VirtualHome [7], a very advanced project with
programmable humanoid avatars that can not only move
around a house but also interact with the world and make
changes to it. However, the main focus of this work is
acquiring human knowledge and so they do not provide any
infrastructure for the integration of robots. Another simulator
for studying human-robot interactions is USARSim [8]. This
framework, however, examine HRI from an operational level
(commander-executor) rather from an collaborative level
(peer-to-peer) and without even including an avatar in their
simulation environment. On the other hand,[9], a simulation
platform for social human-robot interaction offers control
for a human agent either through VR or keyboard input.
However, the human agent here is not introduced to its
robotic partner as a further cognitive agent but instead as
a social and physical interactive partner. Finally, there is
MORSE [10], a robust simulator for academic robotics fairly
used from 2012 [11] to 2014 [12] on HRI simulation, some of
its applications introduce the use of knowledge base systems,
however, they are not meant for robot-human awareness.
Also, MORSE is an already outdated tool as they used the
Blender Game Engine, which was discontinued a couple of
years ago.

Simulation environments for the development of robots
still miss a comprehensive human model. Existing human
models are often very simple and do not provide any insights
into the cognitive process of the human therefore realizing
the autonomous behavior of the simulated human character
is very limited. Hiatt et al. [13] review different approaches
to model human behavior for human-robot collaboration
tasks. According to their research on a computational level,
a simple probabilistic model can capture human behavior by
defining cost functions [14]. However, such models are a
generalized characterization of human behavior and do not
provide any deep insight into the underlying processes that
influence the behavior of humans.

With machine learning, [15] more complicated mathemat-
ical models can be formulated to capture a broader array
of human behavior but still without answering why humans
behave the way they do. While computational models make
sense of low-level signals like movement patterns to antici-
pate better or recognize human behavior, Petri Nets [16], for
instance, analyze human behavior on a higher level. Petri
Nets describe the behavior of humans as a discrete event
system and analyze how system resources, e.g. people or
objects, change over time. Similar to computational models,
they do not provide an answer to the underlying reasons for
human behavior. A more powerful approach is knowledge-



based human models that provide a richer and hierarchical-
based understanding of human behavior.

We suggest that for a robot to have an understanding of
a human and its complexity, humans must be introduced
as further cognitive agents to its robotic partner. Thus,our
proposed framework UAivatar1 includes, therefore, a fully
controllable and programmable human model. The human
model is integrated into the AI software and control architec-
ture of the operating robot. The robot software architecture
consists of the high-level planning framework CRAM, and
the knowledge processing system KNOWROB2 [17] with
UAivatar human modeling and simulation tools,allowing the
reader to design and test various operational aspects in HRI.
In addition, it provides a digital twin model of a human
partner.

Our human agent model is described in the same way as
our robot PR2 using the Semantic Robot Description Lan-
guage (SRDL)[18] which is tightly integrated into KnowRob.
KNOWROB2 [17] is a knowledge representation and rea-
soning system that equips robots with a query answering
machine that runs within the perception-action loop. With
the introduction of SRDL, early efforts were made to model
self-aware robots. SRDL promotes self-awareness by equip-
ping robots with knowledge about themselves. It links the
components such as sensors, actuators, and control programs
via capabilities to actions in the form of an ontology. This
approach allows for bridging the gap between high-level
actions and the low-level description of the robot such as
the structure and kinematics of its manipulator. In this way
a robot can infer the required components for performing a
specific action.

For modeling human behavior we choose the high-level
planning framework CRAM(Cognitive Robot Abstract Ma-
chine) [19] which is the same planning framework running
on the operating robot. CRAM is flexible and abstract
enough that it can be used across many different kinds of
robotic agents; including human models. The human model
is therefore integrated into the system as a robotic agent
with its own CRAM high-level plans, action designators, and
process modules. Since CRAM provides tools that enable
the agents to reason about their actions as well as other
agent’s actions integrating a robotic human model provides
the robotic agent insight into the human’s intention.

Our framework equips not only robots with symbolic
knowledge about humans but makes use of a Digital Twin
World that provides mechanisms for accessing the full joint
configuration of our agent models which allows us to sim-
ulate HRI on a highly sophisticated level. With URoboSim
[20] the robot is now capable to utilize its mental simulation
to anticipate action and action effects. The framework offers
many features to aid the robot in making informed decisions
about its actions. In addition to a symbolic knowledge
base, it utilizes modern information processing technologies
such as physics simulation and rendering mechanisms of
game engines to generate an inner world knowledge base.

1https://github.com/code-iai/UAivatar

This inner world model is a detailed, and photo-realistic
reconstruction of the robot’s environment. The robot can,
therefore, geometrically reason about a scene by virtually
looking at it using the vision capability provided by the game
engine, and predict the effects of actions through semantic
annotations of force dynamic events monitored in its physics
simulation. Being in a virtual environment we have access
to ground truth data during the whole simulation.

II. FRAMEWORK ARCHITECTURE

The framework includes a fully controllable human model
integrated in the AI software and control architecture of
the operating robot. Figure 1 depicts different parts of the
architecture which are explained in the following paragraphs.

The UAivatar is developed as a plugin for the Unreal
Engine (UE). It includes a digital 3D UE MetaHuman
that we refer to as Avatar. Each Avatar is a photorealistic
rigged model with a movable and posable digital skeleton
mesh. The plugin provides a ROS low-level control interface
to command the human agent in the virtual environment.
Additional ROS interfaces are implemented to communicate
with other components of the system via ROS topics, services
and actions.

We model four different aspects of our UAivatar human
agent:

• Kinematics
– Human URDF Model

• Semantics
– KnowRob Agent Model

• Control
– CRAM High-Level Plans

• Memory
– KnowRob Narrative Episodic-Enabled Memories

(NEEMs)

Kinematics: To model the kinematics of humans, a basic
human model is first described through the Unified Robot
Description Format (URDF). The URDF model specifies the
kinematic structure of agents through a series of links that
are connected by kinematic joints. For the visual appearance,
the 3D digital human mesh was segmented and cut into
different parts to obtain the individual mesh for each link.
The UAivatar framework includes a tf publisher to keep track
of all avatar link frames and their transformations between
them and the environment during simulation. It includes also
a joint state publisher as well as a subscriber to command
the avatar with other ROS compatible softwares.

Semantics: Since however, the URDF does not provide
any semantics to explain what the kinematic structure ac-
tually means, it is transformed to a more powerful and de-
scriptive SRDL model. On the semantic level the kinematics
links of an agent are grouped to more high-level components
that can be associated to a dedicated purpose. The URDF
model of the human agent describes, for instance, hand solely
as a base link for several other links without any concrete
meaning, context or purpose. In the SRDL model, however,



Fig. 1. An architecture for cognition-enabled robotics using a simulation-based inner world model of a human avatar. The human model is integrated in
the AI software and control architecture of the operating robot.

hand is modeled as an entity with relations to other entities.
Hands are now recognized as part of the human body with
wrists as their kinematic root. The purpose of hands and
the remaining high-level components is determined through
modeling capabilities.

Control: In order to define the high-Level plans, we prefer
to use CRAM as it is a well-proven toolbox for designing,
implementing and deploying software on autonomous robots.
The CRAM Plan library of the avatar includes various high-
level plans that have been executed in the digital twin world.
The plans are defined through CRAM’s action designators
which are resolved into series of more specific sub-Actions
or into several motion designators, creating a hierarchical
plan structure. Different agents can have different kinds of
actuators and the process modules allow for this flexibility,
providing an agent-independent interface to the high-level
planning. This last interface relies on ROS to call for the
services provided by the Avatar in UE. Both the Avatar
and the Robot can work with CRAM and ROS. The dif-
ference is that the atomic action controllers of the Avatar
are implemented within UE while the motion controllers of
the Robot are implemented with Giskard 2. Controlling the
human model with the functionality provided by UE also
allows for commanding the Avatar from simpler ROS-Python
scripts or even from a console command prompt within the
UE’s ViewPort, which results in efficient debugging. The
advantage of also using CRAM with the Avatar lies in having
clear action descriptions that can be easily understood and
reason about by the Robot. The current UAivatar can be
commanded to:

2https://giskard.de/wiki:tutorials:introduction

• grasp objects
• place objects
• cut objects
• spoon liquids
• pour liquids
• fork food
• feed food
• open/close doors
• follow paths
• interact with microwave/fridge
• turn book/newspaper pages
• sit on chair

Memory: During the execution of the CRAM high-level
plan, event-related knowledge is automatically queried and
logged. This knowledge include the action hierarchy of the
performed task, parameters such as the success status for
all actions and their sub-actions, and as well as the status
of all task-related objects. Using our digital twin we can
also extract knowledge directly from UE and log it into our
knowledge base KnowRob as Narrative Episodic-Enabled
Memories (NEEMs) . This knowledge comprises two parts:
symbolic and sub-symbolic knowledge. Symbolic knowledge
represents all the events occurring during the environment
and is described using the Web Ontology Language (OWL).
The sub-symbolic knowledge includes the position and ori-
entation of all task-related objects and human body parts and
the trajectories of all motions, which were performed during
the Task Sequence.

III. CONCLUSIONS AND FUTURE WORK
This work presents a fully controllable human model inte-

grated into the AI software and control architecture of the op-



erating robot. The robot’s knowledge base was extended with
a cognitive human model that describes different aspects of
human characteristics, such as kinematics, semantics, control
and memory. Moreover, NEEMs were generated and logged
into the knowledge base using CRAM for commanding an
Avatar within a digital twin world. These NEEMs can be
queried by any robotic system, with access to the knowledge
base and with CRAM as its cognitive reasoner, to construct
models of human behaviors; gaining common ground access
to valuable information about human activities and so having
better means for exploiting its human awareness capabilities.
To improve robot-human awareness, we plan to enrich our
cognitive human model with the knowledge that goes beyond
the kinematics and the capabilities of humans. We believe the
information state of humans should also capture preferences
regarding HRI as well as human emotions that might require
an emotional response from a robotic agent. Further research
will be conducted in the context of the theory of mind and
perspective taking where UAivatar can elevate the process
of estimating human intent.
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ulating human-robot interactions for dialogue strategy learning,” in
Simulation, Modeling, and Programming for Autonomous Robots,
D. Brugali, J. F. Broenink, T. Kroeger, and B. A. MacDonald, Eds.
Cham: Springer International Publishing, 2014, pp. 62–73.

[13] L. M. Hiatt, C. Narber, E. Bekele, S. S. Khemlani, and J. G. Trafton,
“Human modeling for human–robot collaboration,” The International
Journal of Robotics Research, vol. 36, no. 5-7, pp. 580–596, 2017.
[Online]. Available: https://doi.org/10.1177/0278364917690592

[14] A. Dragan and S. Srinivasa, “Formalizing assistive teleoperation,” 07
2012.

[15] C. Breazeal, J. Gray, and M. Berlin, “An embodied cognition approach
to mindreading skills for socially intelligent robots,” The International
Journal of Robotics Research, vol. 28, pp. 656–, 05 2009.

[16] C. Dondrup, I. Papaioannou, and O. Lemon, “Petri net machines for
human-agent interaction,” 09 2019.

[17] M. Beetz, D. Beßler, A. Haidu, M. Pomarlan, A. K. Bozcuoglu, and
G. Bartels, “Knowrob 2.0 – a 2nd generation knowledge processing
framework for cognition-enabled robotic agents,” in International
Conference on Robotics and Automation (ICRA), Brisbane, Australia,
2018.

[18] L. Kunze, T. Roehm, and M. Beetz, “Towards semantic robot descrip-
tion languages,” 2011 IEEE International Conference on Robotics and
Automation, pp. 5589–5595, 2011.
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