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Abstract— Dealing with the stochastic nature of human
behaviour in Human-Robot Collaboration (HRC) remains a
well known challenge that needs to be tackled. Automated
task planning techniques have been implemented in order to
share the workload between the agents, but these still lack
the necessary adaptability for real-world applications. In this
paper, we extend our previous work presented in [1], where an
improved task planning framework integrating an agent model
was presented, anticipating and avoiding failures in HRC by
reallocating the actions in the plan based on the agents’ states.
This work introduces the integration of interaction actions into
the planning framework, in order to deal with situations where
the issue reflected by a change in an agent state might be
better handled with an interaction between the agents than by
an action reallocation. Preliminary evaluation shows promising
results of how this framework can help to increase the success
in HRC plans, as well as the balance in workload distribution
between the agents, which constitutes a key element in a
collaboration.

I. INTRODUCTION

The topic of Human-Robot Collaboration (HRC) has
gained substantial attention over the past years, with the idea
of combining strengths from humans and robots to improve
efficiency and productivity in shared plans. However, there
are still several challenges that need to be tackled when de-
veloping such systems for real-world successful applications.

AI (or automated) task planning frameworks have been
implemented to generate and distribute the sequence of
actions required to achieve a shared goal, when given a world
model (domain) with an initial state and a high-level goal.
In our previous work [1], the failure of these frameworks to
deal with the unpredictable nature of the human behaviour
was recognised as one of the main challenges in HRC. We
targeted the gap between agent state modelling and AI task
planning in order to improve adaptability. An AI planning
framework for HRC plans integrating the agents’ states
as action costs was developed, in order to anticipate and
avoid failures due to unforeseen human behaviour. The agent
state was defined in terms of three components: capacity,
motivation and knowledge. These three elements are believed
to capture unexpected events, covering the main reasons
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Fig. 1. Inference of the type of interaction required (on the right), based
on the agent states (on the left).

why an agent would not contribute towards a shared goal.
The system continuously checks if the agent is physically
capable, focused, and has all the required knowledge to
complete the shared task. A change in the agent state during
the plan execution would be dealt with by replanning, taking
into account the new state in the action costs and accordingly
reallocating the actions in the plan, avoiding the failures that
would have occurred if assigned to this agent. This, although
successful in terms of failure prevention, would sometimes
lead to an unbalanced contribution between the agents.

This paper extends this work by adding Human-Robot
Interaction (HRI) capabilities into the plan definition and
generation. We introduce a new action type to trigger in-
teractions, which is useful for the cases where an interaction
might help to get the agent to collaborate again. Now, the
system can choose among reallocating actions or trying to
interact to solve the issue (lack of motivation, knowledge or
capacity) (Fig. 1). We intend to answer the following research
questions. In case of unexpected events affecting the agents’
contribution in a collaboration,

• R1 - Can we maintain the balance in workload alloca-
tion by integrating interactions in a planning framework
based on an agent model?

• R2 - Can this help to mitigate failures and increase the
success rate?

The contribution of this work consists in a modelling and
planning framework that plans for both agents in a col-
laboration and integrates the right interactions between the
agents’ based on their states. Our hypothesis is that in this
way, unplanned events reflected in the agent behaviour can
be better dealt with, and a more successful and balanced
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collaboration can be achieved.

II. RELATED WORK

Previous research has dealt with the combination of task
planning and HRI in a number of ways. A number of
works focus on modelling the interaction through planning
formalisms. In [2], a general PDDL planning domain for the
formalisation of HRI is introduced. Sanelli et al. [3] define a
conditional planning domain to generate and execute short-
term interactions by a robot deployed in a public environ-
ment. The authors in [4] deviate from PDDL, developing a
planner based on graph models for HRI domains. In [5], the
human-robot interactions are included in the planning system
by using a complex taxonomy of preferences [6], and in [7],
this approach is evaluated in assistive robotic applications.
Also in the assistive domain, in [8], the authors tackle the
problem of agile and effective interactions by using a learned
policy using a simulator [9]. These works concentrate the
effort on modelling and planning for interactions, but do not
integrate them into a high level collaborative plan where a
joint goal needs to be achieved by the agents, which is the
case targeted in this work.

In [10], the feasibility and cost of verbal communication is
taken into account at the task planning level for a task where
the robot issues commands to the human partner in order to
achieve a goal. In [11], the authors propose a solution for
human-robot collaborative plans where the robot interacts
in an adaptive way based on the human partner’s level of
knowledge about the task. In this work, the interactions
are not meant to handle unexpected events or modify the
plan, but to provide explanations. Devin and Alami [12]
explicitly use an estimation of the human knowledge in the
shared plan execution, focusing on producing a less intrusive
behaviour of the robot. Theory of mind is used to detect
when verbal communication is required to solve a knowledge
divergence between the agents. Our work elaborates on this
idea, covering, in addition to knowledge, the elements of
capacity and motivation of the agents.

To the best of our knowledge, there is no work focusing on
planning for interactions that directly handle an issue fully
reflected in an agent state model in a collaboration, with the
aim of both avoiding failures and maintaining the workload
share as balanced as possible between the agents.

III. METHODOLOGY

The workflow we propose in order to improve HRC plans
through planning for interactions can be seen in Fig. 2. The
planning system has been implemented in a standardised
environment using the Planning Domain Definition Language
(PDDL) [13] and the modular ROSPlan framework [14].
This allows for the concept to be easily extended to a
variety of scenarios and applications involving Human-
Robot Collaboration. The initial collaborative plan assigns
a sequence of actions to each agent, assuming both agents
have full motivation, knowledge and capacity to complete
their assigned part of the plan. A change in these states,
which are constantly monitored during the plan execution,
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Fig. 2. Workflow implemented in order to adapt to changes in the agents’
states during a collaboration, by planning for both the required interactions
and the reallocation of actions between the agents.

will stop the current plan execution and trigger a replan.
As these states are represented in terms of action costs
in the PDDL plan definition (as described in our previous
work [1]), the new plan will take them into consideration,
reassigning the actions between the agents as needed and
avoiding action failure due to the agent state. The novelty
we introduce here is that the agents’ states are also used
to infer a possible interaction that could handle unexpected
events and avoid some actions having to be reassigned to a
different agent, maintaining a more balanced workload share
in the collaboration. The PDDL problem is also updated with
this information, and the new plan will include the required
interactions.

The inference of which interaction action is required is
based on the agents’ states as shown in Fig. 1. Four types of
interactions are introduced: motivate, ask for help, help, and
share knowledge. In terms of actions, two types are defined in
the PDDL domain: the execution actions, contributing to the
plan completion, and the interaction actions. The interaction
actions are expected to handle and avoid action failures that
would have been caused by the lack of motivation, capacity
or knowledge in a participating agent. They have the effect of
decreasing the execution action costs reflecting the relevant
component of the agent state (Fig. 3). The change of action
cost by the interaction action will take effect during the plan
execution, but is taken into account by the planner at the
plan generation stage.

AI Planning 
(defined in PDDL) 

Execution actionsAgent state Capacity

Knowledge

Motivation

Interaction type inference Interaction actions

Modify when
executed

Reflected in Knowledge Cost 
Capacity Cost 

Motivation Cost 

Fig. 3. Block diagram representing the integration of the agents’ states and
the derived interaction actions required into the AI task planning framework.
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Each interaction action deals with
a different element from the agent
model. The motivate action sets
the motivation cost (increased
from a previous distraction) to 0:
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Fig. 4. Integration of interaction capabilities into the AI task planning
framework, defined using PDDL.

Fig. 4 provides more detail on how the interactions are
integrated in the planning PDDL definition. The execution
actions increase the plan cost based on the motivation,
capacity and knowledge costs of the agent that each action is
assigned to. The execution actions contain the precondition
that an interaction is not needed, whilst the interaction
actions have this precondition as an effect. Each interaction
action deals with a different element from the agent model,
setting the cost related to this element to the minimum.
As an example, if low motivation (high motivation cost) is
detected on the human, a motivate action from the robot
might be required. This is reflected in the PDDL problem
by setting the predicates (not(interaction not needed)) and
(interaction needed ?motivate ?robot ?human). The motivate
action will therefore be assigned to the robot, lowering the
human motivation cost to 0, and the remaining actions can be
distributed again between the agents. Before the introduction
of the interaction actions, the human motivation cost would
have remained high, and all of the actions in the plan would
have been assigned to the robot. In this work, we assume the
interaction actions are successful and have the desired effect,
solving the relevant motivation, capacity or knowledge issue.

IV. PRELIMINARY RESULTS

We present three cases where the collaboration is improved
by the integration of interaction actions in the collaborative

planning framework, as a way of dealing with unexpected
events due to the agents. Our example consists of a robot and
a human that need to move boxes between different locations
(Fig. 5). The specified goal is for the green box to be moved
from wp3 to wp2 and the blue box to be moved from wp4 to
wp5. Initially, motivation, capacity and knowledge costs are
set to a low value, meaning both agents are capable, focused,
and have all the required knowledge to complete the shared
task, which produces the plan in Fig. 6 - InitialPlan.

Fig. 5. Simulated scenario for evaluation consisting of two agents (robot
and human) that have to transport blocks to different locations.

Case 1) The human agent gets distracted at the start
of the plan execution. This is reflected in the motivation
component of the human state, which is in turn reflected
in a very high human motivation cost affecting all human
actions. Without the possibility of interacting, all the actions
in the plan would have been assigned to the robot in order
to avoid failures. This, however, defeats the purpose of the
collaboration. With the integration of the interaction actions,
the problem is solved by introducing a motivate action
from the robot to the human, which will lower the human
motivation cost, allowing for the workload balance to be
recovered for the rest of the plan (Fig. 6 - Case1).

Case 2) The robot needs help to move after grasping
the block as the path is blocked. This is reflected in the
capacity component of the robot state. Observe that a replan
without interactions will lead to the same failing initial plan.
As the robot has already picked the block, placing it back
and moving away (place, then move) involves the same
cost as the initial plan (move, then place). By introducing
the interaction domain, a need for the askforhelp action is
recognised by the system, which will be reflected in the
PDDL domain. The replan will include an askforhelp action
from the robot to the human, followed by a help action from
the human to the robot. After this, the path is assumed to
be unblocked, setting the robot capacity cost back to 0. The
rest of the plan remains unchanged, reaching the goal whilst
respecting the intended workload balance (Fig. 6 - Case2).

Case 3) The human doesn’t know where the placing
waypoint is. This time the event is reflected in the knowledge
component of the human. Before the implementation of the
interaction framework, as the human has already picked the
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block, the same failing plan is generated. If the need for a
shareknowledge action is detected, the new plan will contain
this action from the robot to the human, lowering the human
knowledge cost and maintaining the initial plan. The desired
goal can therefore be reached whilst maintaining a balanced
collaboration (Fig. 6 - Case3).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have improved and extended an AI
task planning system that anticipates and prevents failures
in HRC plans, by considering the agents’ states to replan
ahead. Depending on this state, the replan might involve the
reassignment of the actions or an interaction between the
agents, maintaining a balanced collaboration whilst avoiding
action failure.

The agent state is represented in terms of capacity, knowl-
edge, and motivation, and is constantly monitored during
the plan execution. We define a PDDL domain including
two types of actions: plan execution actions and interaction
actions. The agents’ states are both represented as execution
action costs in the PDDL domain, and used to make the
decision on the need of an interaction. The interaction actions
deal with a failure that would have been caused by the lack
of capacity, knowledge or motivation in an agent, and have
the effect of reducing the part of the execution action costs
representing this element. In this way, a change in an agent
state, which triggers a replan, can be handled not only by
the reassignment of actions in the generated plan, but also by
interacting, which might sometimes be preferred to maintain
a balanced collaboration.

The system can be easily expanded, implemented in a
standardised environment using PDDL and the modular
ROSPlan framework. The effect of the introduction of inter-
actions into the planning framework on the collaboration was
analysed for three cases by means of simulations. From the
preliminary results, we can affirmatively answer the research
questions posed regarding the human-robot collaboration,
in terms of workload allocation improvement and failure
mitigation through the addition of interaction actions.

As future work, we envisage to extend the evaluation to a
significant number of runs and scenarios, including metrics
such as success rate and workload balance allocation. We
also intend to improve and develop the interaction inference
block based on the agent state. In this work, we associate a
type of interaction to a single failing element in the agent
model. We will need to deal with the cases where several el-
ements in the agent model are low (e.g. agent has both a low
motivation and capacity): Which interaction(s) are needed?
Which interaction to trigger first? Furthermore, this work
assumes the interactions are always successful at dealing
with the detected issue in the collaboration. However, a way
of dealing with the cases where the interaction fails will
need to be investigated. Finally, a more detailed definition
of what the interaction type involves will be required for the
implementation of the framework in a real system.
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Fig. 6. Three cases presenting the benefits of the integration of interaction
capabilities into the planning component to increase the success rate and
workload allocation between the agents in a collaboration.
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F. Fernández, “An automated planning model for hri: Use cases on
social assistive robotics,” Sensors, vol. 20, no. 22, 2020. [Online].
Available: https://www.mdpi.com/1424-8220/20/22/6520

[3] V. Sanelli, M. Cashmore, D. Magazzeni, and L. Iocchi, “Short-term
human-robot interaction through conditional planning and execution,”
in ICAPS, 2017.

[4] L. Manso, P. Bustos, R. Alami, and G. Milliezf, “Planning human-
robot interaction tasks using graph models,” in International Workshop
on Recognition and Action for Scene Understanding, Oct. 2015, pp.
195–208, © 2015 The Authors.
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