
DDPEN: Trajectory Optimisation With Sub Goal Generation Model

Aleksander Gamayunov1,2 Aleksey Postnikov1,2 Gonzalo Ferrer2

Abstract— Differential dynamic programming (DDP) is a
widely used and powerful trajectory optimization technique,
however, due to its internal structure, it is not exempt from
local minima. In this paper, we present Differential Dynamic
Programming with Escape Network (DDPEN) - a novel ap-
proach to avoid DDP local minima by utilising an additional
term used in the optimization criteria pointing towards the
direction where robot should move in order to escape local
minima.

In order to produce the aforementioned directions, we
propose to utilize a deep model that takes as an input the map
of the environment in the form of a costmap together with
the desired goal position. The Model produces possible future
directions that will lead to the goal, avoiding local minima which
is possible to run in real time conditions. The model is trained
on a synthetic dataset and overall the system is evaluated at
the Gazebo simulator.

In this work we show that our proposed method allows
avoiding local minima of trajectory optimization algorithm and
successfully execute a trajectory 278 m long with various convex
and nonconvex obstacles.

I. INTRODUCTION

The need for service professions - couriers, cleaners, etc. is
growing along with the population of the planet. At the same
time, mobile robotics continue to develop and can replace at
least part of the monotonous work, while providing people
with new highly skilled jobs.

We are witnessing news about novel robot couriers, and
robot vacuum cleaners that have already become common-
place while autonomous tractors are starting to drive through
the agricultural fields.

Navigation is one of the core subsystems for robot’s
autonomy which is largely dependent on path planning and
trajectory planning algorithms.

In this work, we consider optimizing algorithms and
propose a solution to the important but common problem
of nonconvex trajectory optimization.

Optimization trajectory algorithms iteratively modify the
initial assumption of the trajectory according to the specified
criteria, and gradually reduce the error value. One of the
important issues is that the free state space is usually non-
convex and presents multiple local minima. An optimization
algorithm can reach one of the local minima and stay in it
without ever reaching the global minima.

For a trajectory optimization task, reaching local minima
can lead to a situation where the algorithm will not lead the
mobile robot to the goal, even if the optimal trajectory exists.
In that case, the mobile robot will not be able to complete

1 The authors are with the Sberbank Robotics Laboratory, Moscow, Rus-
sia. {gamayunov.a.r, postnikov.a.l}@sberbank.ru.

2Skolkovo Institute of Science and Technology, Moscow, Russia.
g.ferrer@skoltech.ru.

Fig. 1. Comparison of DDPEN (left side) with DDP (right side) on
trajectory optimization with nonconvex obstacle. The robot is in the center
of gray costmap. Black part of the costmap represents obstacles. Green line
is the optimized trajectory. Green rectangles is predicted sub goals xs. Blue
circle is desired goal position xgoal.

its task.
A number of works are devoted to this problem. Zhaoming

Xie et al. in his work of extension the differential dynamic
programming trajectory optimization approach (DDP [1],
[2]) with nonlinear constraints (CDDP) [3], mention that
“like all nonconvex optimization, we need a good initial
trajectory to ensure that the algorithm would not get stuck
in a bad local minima”.

In that case sampling trajectory planning algorithm like
RRT ∗ [4] or some sort of fast neural path planning A∗

[5] algorithms for generating a safe initial trajectory for
optimization can be used. Another approach of local minima
avoidance is based on DDP maximum entropy formulation
(MEDDP) [6], with multimodal policy exploration.

Escaping from local minima is a trivial task for human
in case of 2d environment but the overall process of escap-
ing from the local minimum is ill-posed with the current
gradient-based optimisation tools in DDP.

In this work, we have proposed an approach for escaping
from local minima that provides additional criteria of opti-
misation, calculated by a neural network, that “suggests” the
best direction for the optimization process.

The Neural network learns to imitate optimal planning
algorithm and provides intermediate goal as additional opti-
misation criteria that leads the optimisation process out from
local minima.

We have evaluated vanilla DDP optimisation algorithm
and our proposed approach (DDPEN) that takes additional
optimization criteria from neural network at simulated sce-
narios in Gazebo [7] and have shown that our proposed
approach is being able to complete complex trajectories even
with nonconvex obstacles.



Fig. 2. Sub Goal Generation Model architecture.

II. METHOD

A. Trajectory optimisation problem

The state of an agent at time t is represented by xt,
where x is the two dimensional vector in the Cartesian
coordinate system. Transitions between states are provided
by the dynamic function xt+1 = f(xt, ut) where ut is a
control action at time t. Sequence of control action U =
[ut0 , ut1 , ..., utN−1

] applied to dynamic function forms the
trajectory X = [xt0 , xt1 , ..., xtN ] from initial time t0 to
prediction horizon tN . The total cost of trajectory J0 is the
sum of running costs l and the final cost lf . The solution
of the optimal control problem is to find the minimum cost
control sequence.

J0(X,U) =

N−1∑
i=0

l(xi, ui) + lf (xN ) (1)

U∗(X) ≡ argmin
U

J0(X,U) (2)

The current work focuses on the cost function l(x, u)
that forms the optimisation direction and can move the
optimisation process into a local minimum.

The cost function, in our vanilla realisation of DDP
optimisation method, includes cg - cost of distance to the
goal state xgoal, cc - control cost and co - cost representing
the distance to obstacles obs at distance less than d meters.

l(x, u) = cc(u) + cg(x, xgoal) + co(x, obs) (3)

lf (x) = cg(x, xgoal) + co(x, obs) (4)

cc(u) =
∑

u2 (5)

cg(x, xgoal) = ∥x− xgoal∥2 (6)

co(x, obs, d) =
∑

ReLU(d− ∥x− obs∥2) (7)

B. DDPEN

The proposed method DDPEN takes into account an
additional cost cs - distance to sub goal xs, generated by
the neural network Eq 10, which represents the movement
direction of the mobile robot that allows avoiding local
minima.

l(x, u) = cc(u) + cg(x, xgoal) + co(x, obs) + cs(x, xs) (8)

cs(x, xs) = ∥x− xs∥2 (9)

Fig. 3. Synthetically generated samples from dataset. Left: Example of
randomly generated costmap Right: Example of paths obtained by A*
algorithm to randomly sampled goals.

C. Sub Goal Generation Model

In order to generate future positions that will force the
trajectory optimization algorithm to avoid local minima we
propose to utilise deep model Eq. 10, that is trained to
imitate goal proposals generated by A∗ algorithm, that would
satisfy real-time restrictions and whose performance would
not depend on the position of obstacles.

xs = SGθ(map, xgoal), (10)

where SGθ - deep Sub Goal Generation Model, map - local
costmap of environment, xgoal - desired goal position of
robot.

Architecture of Sub Goal Generation Model, shown in
Figure 2, consist of convolution based encoder of obstacle
map, namely EfficientNet B0 [8], linear layer that embeds
goal positions, and transformer based decoder that generates
sub goal positions.

D. Dataset

We have created a synthetic dataset that captures randomly
generated obstacle maps and optimal path to randomly
sampled goal on that map. As a base for obstacle map
generation it is taken a costmap with 200x200 cells with
the cell side length of 5cm. Predefined obstacles are cre-
ated at random positions with non-blocking center position
constraint. Obstacles are positioned through a random affine
transformation for augmentation purposes. After generation
of obstacles, their costs are dilated from occupied cost to
free moving space.

We have used A∗ path planning algorithm to generate
examples of paths from starting position, which is in our case
always the grid center, to randomly sampled goal position
near borders of the costmap. After processing the optimal
path from randomly sampled goal positions on a randomly
generated costmap, intermediate positions of sub goals at 30,
50, 70 steps of the optimal path are saved together with goals
and costmaps, forming the overall dataset. Synthetically
generated samples from the dataset is shown in Figure 3.

E. Simulator

For conducting experiments and evaluation, we use
Gazebo [8] simulator with an environment map reconstructed



TABLE I
COMPARISON OF DDP AND DDPEN TIME EXECUTION OF PATH. THE VALUES IS THE MEAN±σ IN SECONDS

Type of obstacles DDP DDPEN
Forward pass Backward pass Forward pass Backward pass

Free 191 ± 1 188 ± 1 191 ± 1 198± 1
Cylinders 243±1 313± 27 255±8 281±32

Cubes without minima 284± 54 262 ± 31 243 ± 15 266± 6
Cubes with minima fail fail 245 ± 7 275 ± 20

from lidar scans and four wheels sidewalk robot model with a
lidar sensor. Environment map and model of robot is shown
in Figure 4. Point cloud data from simulated lidar sensor
after processing by ROS2 [9] node provides costmaps that
uses as an input to trajectory optimization algorithm and
sub goal generation model. We use a global path passing
through 8 points on the reconstructed map for experiments,
as shown in Figure. 4. xgoal is located on the intersection
of the local costmap border and the line between next and
previous global path points, and is used as input to the
trajectory optimization algorithm and sub goal generation
model.

Fig. 4. Simulated street on the top on figure, simulated sidewalk robot in
environment on the right down and the real robot at the same place on the
left down. Green circles on the simulated street show the path points for
experiments.

F. Running cycle

The implementation of a particular optimization algorithm
takes 75ms for the optimization epoch, where generation
of intermediate goal by neural network takes 9.03 ms ±
139 µs. We use 4 optimisation epochs before executing
calculated trajectory. For the next cycle of 4 optimisations we
use previously generated trajectory with cut past trajectory
predictions and added new assumption of trajectory by
applying last control, as shown in Figure 6. Executor uses
generated trajectory for sending controls to the robot at stable
10Hz and approximate controls between predictions while
next optimisation cycle will end.

III. EVALUATION

We evaluate vanilla DDP and proposed DDPEN trajectory
optimization algorithms by executing path of 278 meters in
both directions 5 times. The path that the robot must follow
passes through the green dots as shown in the Fig. 4.

We manually place different types of obstacles along the
path which results in 4 different environments:

• Free - original obstacle free environment.
• Cylinders - environment with additionally placed cylin-

ders with the radius 1m along the path.
• Cubes without minima - environment with additionally

placed cubes with a side 2m forming convex obstacles.
• Cubes with minima - environment with additionally

placed cubes with a side 2m forming nonconvex ob-
stacles.

Resulting trajectories of DDP and DDPEN in an environ-
ment with Cubes with minima is shown in Figure 5.

Both DDP and DDPEN have equal configuration and
dynamic model with linear max velocity limit of 1.5 m/s
and angular velocity limit of 0.5 rad/s.

The main goal that we have focused on in this work is the
ability to complete the entire path trajectory even with non-
convex obstacles, and we also evaluated the path execution
time as an indicator of system efficiency.

A. Results

Table I shows the average time ± standard deviation
in seconds for passing 4 different scenarios, where longer
execution times mean more iterations were required to
converge, failures happens due to weak gradient signals in
configurations that are close a local minima. Table I shows
expected result for DDP which can’t complete trajectory
on map with local minima, while our proposed method
DDPEN is being able to complete trajectory with nonconvex
obstacles.

Time of path execution in forward and backward directions
are not equal, because trajectories in different directions have
minor differences that affect the optimization process.

We can see time execution deviation in the same scenarios
that shows how simulation errors affects trajectory optimi-
sation process. A small error in the the simulation process
leads to differences in the execution time of the trajectory,
especially in the case of trajectories located near obstacles.

The sum of trajectory execution mean time have differ-
ences on cylinders and cubes maps - DDP 1102 ± 68s
comparing to DDPEN 1045 ± 37s, because DDPEN starts



Fig. 5. Robot trajectories in a simulated environment with non-convex obstacles. The green circle is the beginning of the paths, the red circle is the end
of the paths. The solid and dotted lines are paths created by DDPEN and DDP respectively. The cross marker is the end of the paths in case of hitting the
local minimum.

Fig. 6. Running cycle - execution trajectory while optimisation process in
progress

avoiding obstacles based on additional sub goal provided by
Sub goal generation model earlier than obstacle cost co starts
to affect the vanilla DDP optimization process as shown in
Figure 1.

IV. CONCLUSION

In this paper we have shown a novel approach DDPEN
that allows trajectory optimization algorithms to escape from
local minima. Our approach utilizes an additional optimiza-
tion term representing the direction towards the robot should
move in order to escape local minima. This additional opti-
mization term based at deep sub goal generation model that
predicts future directions that the robot should follow in order
to avoid local minima. The model is trained with synthetic
dataset and overall system is evaluated on a simulated scene
at Gazebo simulator.

The evaluation shows that the proposed method DDPEN is
more reliable against the local minima problem, while vanilla
DDP fails.

REFERENCES

[1] D. Mayne, “A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems,” International Journal
of Control, vol. 3, no. 1, pp. 85–95, 1966.

[2] D. H. Jacobson and D. Q. Mayne, Differential dynamic programming.
Elsevier Publishing Company, 1970, no. 24.

[3] Z. Xie, C. K. Liu, and K. Hauser, “Differential dynamic programming
with nonlinear constraints,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017, pp. 695–702.

[4] I.-B. Jeong, S.-J. Lee, and J.-H. Kim, “Rrt*-quick: A motion plan-
ning algorithm with faster convergence rate,” in Robot Intelligence
Technology and Applications 3. Springer, 2015, pp. 67–76.

[5] R. Yonetani, T. Taniai, M. Barekatain, M. Nishimura, and A. Kanezaki,
“Path planning using neural a* search,” in International conference on
machine learning. PMLR, 2021, pp. 12 029–12 039.

[6] O. So, Z. Wang, and E. A. Theodorou, “Maximum entropy differential
dynamic programming,” in 2022 International Conference on Robotics
and Automation (ICRA). IEEE, 2022, pp. 3422–3428.

[7] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

[8] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105–6114.

[9] S. Macenski, F. Martı́n, R. White, and J. G. Clavero, “The marathon 2:
A navigation system,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 2718–2725.


