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Abstract—Current imitation learning methods for designing
robot motion are limited because they rely on human input
of environment information (e.g. objects indicated by deictic
gestures), which is time-consuming when designing robot motions
for real-world scenarios. To solve this problem, we propose a
novel method for finding the references of pointing gestures by
using heat map information extracted from motion and speech
clustering of human-human interaction data. To develop this
method we setup an array of skeleton-sensing depth sensors to
record human motion during natural interaction in an in-lab
camera shop scenario. The results show that our method can
find the positions of the objects being pointed to (cameras in the
camera shop). Eventually, we aim to design a robot system that
automatically learns to imitate all socially appropriate interactive
motions (gestures, body postures, etc.).

Index Terms—human-robot interaction, data-driven learning,
imitation learning, gesture, social interaction

I. INTRODUCTION

Humans use many types of interactive motions for effective
social interaction [1], such as gestures and body postures,
which contain important social information (Fig. 1). There-
fore, social robots should also be able to perform socially
appropriate interactive motions; however, current state-of-the-
art techniques for designing robot motions are labor-intensive,
which limits the possibility of applying them to social robots
deployed in the real world. In contrast to previous approaches,
we aim to design a system that automatically learns interactive
motions, and the logic for when it is socially appropriate
to perform a motion, from human-human interaction data
collected via a passive sensor network, without manual data
labeling and manually designed motions.

In this paper, we present our work in progress on learning
interactive motions, specifically focusing on the problem of
learning pointing gestures and their references (which ob-
jects in the room are being pointed at). Deictic gestures are
unique because not only must the motion of the gesture be
learned, but also where in the surrounding environment they
are referring to. Previous approaches to imitation learning of
gestures require this information to be specified and input
ahead of time [2, 3], but we propose a technique using motion
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Fig. 1: Interactive motions used in a camera shop. (a) The
shopkeeper used a pointing gesture to provide position infor-
mation. (b) The shopkeeper stood in a respectful posture to
show a positive attitude towards the customer.

clustering and pointing heat maps to identify the pointed
targets automatically.

Furthermore, in this work, for the purpose of a proof of con-
cept, we collected a new dataset of human-human interactions
in an in-lab camera shop scenario via a passive sensor network,
where participants role-played as customers and shopkeepers.
Using this dataset we demonstrate our automatic pointing
gesture reference identification technique and applied motion
clustering to learn a variety of other interactive motions.
This work focuses on the unique problems of learning to
imitate pointing gestures, but the eventual goal is to develop a
generalized method for finding environment references for all
kinds of interactive motions and for a robot to imitate these
interactive motions in real-time human-robot interaction.

II. RELATED WORKS

A. Human-designed Motion Model

In the field of social robotics, many studies have used
manually designed motion models on their robot to accomplish
complex interaction tasks such as models for deictic gestures
[4, 5, 6], head movement [7, 8], and arm movement [3, 9].
Among these works, Okuno et al. [4] designed pointing ges-
tures for a navigation robot by modeling the speech, motion,
and timing of human behaviors from observation. Liu et al. [2]
discussed the difference between casual pointing and precise
pointing and designed a robot with polite deictic gestures.
Huang and Mutlu [3] modeled four different types of gestures



for a teaching robot, which are able to refer to pictures
projected on the wall.

However, as these studies manually design their models, it
would require huge human effort to apply them in the real
world, where novel, unanticipated interactive motions may
be used. Furthermore, when referring to objects or directions
from the environment with gestures like pointing, they require
human input of the environment information, such as the
position of the object. In contrast, in our less labor-intensive
approach, we use motion clustering and a novel reference find-
ing method to automatically learn motions and their reference
in the environment from data without extensive human input.

B. Data-driven Motion Model

Data-driven motion models generate motions for robots by
learning from multi-modal data. Yoon et al. [10] proposed a
model to generate human upper body gestures from a given
speech text, and their model is trained on human gesture data
from online videos. The model designed by Plappert et al. [11]
could output whole-body motions and be trained from motion
capture data. Shlizerman et al. [12] presents their model for
output skeleton movement of playing instruments for music
audio input by training with music playing videos.

In contrast to our work, these related works are designed
for single-speaker scenarios. Their training data and imple-
mentations do not include the complex turn-taking interaction
context we may have in our target interaction scenario. Our
essential goal is to learn the interaction logic of performing
interactive motions in human-robot interactions. Moreover, the
related works do not focus on the problem of using motions
to refer to objects or directions in the environment, which is
the main focus of this paper.

III. DATA COLLECTION

The first step of the imitation learning approach is to
collect human-human interaction data in a target scenario.
Ideally, data for imitation learning should be collected in the
real world, in situations where the robot will eventually be
deployed. But, interactions in the real world are complex,
which would require great quantities of data to train the
system. Furthermore, depth sensors and microphones are still
not precise enough to record data in the real world while
maintaining the quality and naturalness of data. Therefore, to
replicate real-world data as closely as possible, and to provide
a proof of concept, we setup a data-collection sensor network
in the lab to collect human-human interaction data.

The sensor network was set up in a 7 m x 8 m room with
some commercially available sensors, including web cameras,
Kinect Azure depth sensors, and blue-tooth microphones.
Fig. 2 shows the layout of our experiment room and sensor
network. We set up 15 Kinect sensors to cover the whole
room from different angles so that participants were allowed
to move anywhere in the room. The passive skeleton sensing
sensor network does not need the participants to hold or wear
sensor equipment so they were free to perform interactive
motions naturally. The human motion data was recorded as

Fig. 2: Layout of the experiment room and our sensor network.
Our sensors are in the blue areas in the pictures.

sequences of joint positions (skeletons) (which could even-
tually be mapped to robot joint positions for imitation). The
use of the blue-tooth microphone audio recording system with
interchannel suppression [13] and online speech recognition
system (Google Cloud1) allow us to record speech data with-
out requiring the participants’ hands and leave them free to
perform interactive motions. And the speech data was recorded
as utterances (text) which could be used as robot speech after
processing in the imitation learning approach.

Our target scenario is a camera shop, in which participants
playing the roles of customer and shopkeeper interact using a
variety of interactive motions. As shown in Fig. 2, we set
up three cameras on pedestals in the room and a service
counter near to the door. We hired actors to perform one-to-one
customer-shopkeeper interactions. Three participants, who had
prior experience in customer service, took turns role-playing
as shopkeepers. We recruited 30 participants (aged from 19 to
60, 13 male and 17 female) to role-play as customers.

During the data collection, each customer participant role-
played 12 interactions with one of the shopkeeper participants,
in which they were allowed to ask about the cameras in the
room. Furthermore, they role-played different customer types
to collect data in a variety of situations. Finally, 394 trials of
interaction data (mean 8 min., SD 3.5 min.; 3170 min. total)
were collected.

IV. DATA PROCESSING

We aim to build a fully unsupervised data-driven pipeline
to generate robot behaviors with socially appropriate motions
from only passively collected human-human interaction data.
In this pipeline, the participants’ typical behaviors will be used
to train a classifier for generating robot behaviors. Currently,
we are working on processing data to extract the typical behav-
iors in preparation for the later steps, including neural network
training. In this section, we will introduce our methods for
extracting participants’ typical motion behaviors, including
motion clustering and finding the environment references for
pointing gestures.

A. Motion Clustering

People tend to use a set of typical behaviors for responding
to similar interaction contexts. For example, in the camera

1https://cloud.google.com/



(a)

(b)

Fig. 3: Examples of the motion clustering results. The red dot
marks the shopkeeper. (a) Pointing gestures from cluster 24
(left) and 28 (right). (b) Iconic gestures from cluster 2 (left)
and 25 (right).

shop scenario, the shopkeeper will use a typical behavior to
thank the customer for coming in by saying ”welcome to our
store” with a nod or a bow. These typical behaviors (speech,
motion, etc.) and interaction patterns are what the imitation
learning approach intends to learn [6]. We intend to learn the
interactive motions from the skeleton data collected in Sec. III.
But, it is difficult to learn directly from the raw skeleton data
because it is noisy and high dimensional. Therefore, we used
an unsupervised method to cluster different types of interactive
motions into typical behavior clusters, which also resulted in
reducing the noise and dimensionality.

When humans perform interactive motions, it is a continu-
ous process that should be treated as time series rather than
separate frames without time information. Therefore, we used
time series K-means [14] to group the skeleton clips into 30
different clusters. The time series K-means uses dynamic time
warping to calculate distances between clips, which represent
the similarity of the clips over time. And the skeleton data
is cut to one-second clips based on our observation that one
second was enough time to perform a meaningful motion,
and was not so long that separate motions would be mixed.
We tested the number of clusters from 5 to 100 and selected
30 because 30 is the point when the inertia (the sum of the
squared distance between the Centroid and each point of the

TABLE I: Categories of Motion Clusters for One of the
Shopkeepers

Category Cluster ID Total Duration
(seconds)

Idle Motion 1, 3, 12, 15, 16,
21, 26, 29 53867

Deictic Gesture 9, 10, 11, 14, 19,
23, 24, 28 6509

Beat Gesture 4, 5, 6, 7, 17,
18, 20, 22, 27 17269

Iconic Gesture 2, 8, 13, 25, 30 4378

cluster) starts decreasing in a linear fashion, which means
adding another cluster doesn’t give much better modeling of
the data (Elbow method [15]). Since we focus more on human
upper body motions, we selected 10 different features for the
clustering related to the human hand and head movement,
including the distance between wrists, elbows, and shoulders;
the speed of hand movement; and head orientation. Since our
goal is to imitate the behavior of the shopkeeper, the motion
clustering is performed only on the shopkeeper to find the
typical motions performed by the shopkeeper. In this work,
we clustered the skeleton data from only a single shopkeeper
participant to reduce the variation in the motion data. We
leave exploring ways to deal with individual differences in
interactive motions (from multiple shopkeepers) for future
work.

We manually checked the clustering results and found that
each of the 30 clusters was well grouped as motions in the
same cluster having similar hand and head movements. The 30
clusters could be categorized into several types, including de-
ictic gestures, iconic gestures, beat gestures, and idle motions
(mainly respectful standing and walking). Fig. 3 shows several
examples of the motion clustering results and Table I shows
the categories and total durations of the 30 clusters categorized
by our manual check. We can see that the shopkeeper will
frequently use different gestures during the interaction. The
deictic gestures (6509 seconds) are used a lot in our scenario,
which implies the importance of correctly imitating them with
the robot. Among the observed iconic gestures, we found
some motion clusters that might be unique in the camera
shop scenario, for example, cluster 25 contains the motions
the shopkeeper performed with her hands to describe how the
light goes through a lens for explaining the function of a single
lens reflex camera.

B. Finding Environment Reference

The environment references should be given to the robot to
ensure its motion is consistent with its speech and its surround-
ing environment. Especially for pointing gestures, the pointing
gestures provide position information of the environment. And
the position information needs to be consistent with robot
speech to perform socially appropriate behaviors. For example,
we don’t want the robot to say ”this is an apple” while pointing
to a random position. Since our aim is to design a system
that can automatically learn to imitate interactive motions,
we propose a method to automatically learn the environment
reference for pointing gestures.

The information extracted from our speech data is used to
find the environment reference for pointing gestures. During
our data collection, we collected both motion data and speech
data which are well synchronized in time. As we clustered
the speech with the same process proposed in [16], utterances
with similar meanings are grouped in the same cluster, so the
speech clusters could provide timely information about when
the participants are talking about the similar topics, thus could
help to find the environment reference of pointing gestures.
For example, ”mirrorless camera” is a particular feature of the
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Fig. 4: Calculation of pointed area. (a) three cases the shop-
keeper points while talking about ”mirrorless camera”. (b) use
the pointing cone to find the pointed area.

Sony camera in our setup, and pointing gestures that are used
when participants are talking about ”mirrorless camera” have
a high probability that is used to refer to the Sony camera.

Based on this assumption, we used the speech clusters
to divide each pointing motion cluster into sub-clusters for
determining the reference of pointing gestures. For a pointing
cluster Mi and speech cluster Sj , we select motions from Mi,
which have the same timestamp with the utterances from Sj ,
and put the selected motions to the same sub-motion-cluster
Mi,Sj

. For example, motions that have the same timestamp
as utterances about a ”mirrorless camera” will be in the same
sub-motion cluster (Fig. 4a).

Furthermore, to link the pointing gestures and the speech
data with an actual position in the room, for each sub-motion
cluster Msub, we used the pointing heat map to calculate the
probability that each location of the room is pointed at. As
shown in Fig. 4b, the pointing cone is a cone starting from
the hand and pointing in the direction of the line passing
through the head and that hand, which is suggested as a better
description for pointing direction in [2]. Each pointing cone
will have an intersection with the room map (the blue area in
Fig. 4b). And by adding all intersections calculated from the
same sub-motion-cluster, we can get a heat map like in Fig. 5,
in which areas that are pointed at most frequently are ’hotter’
(red).

Fig. 5 shows the heat maps of three sub-clusters for cluster
24, which is one of the pointing clusters. With the generated

(a) (b) (c)

Fig. 5: Pointing heat maps generated from sub-motion clusters
of cluster 24 divided by topics of (a) Nikon camera, (b) Sony
camera, and (c) Canon camera. The room map is generated
from our sensor network and is on the top view of the room.
Areas on the map that are more frequently pointed at are
shown as closer to red (hotter). The hottest area in the above
pictures, (a) bottom-left (b) top-right, and (c) bottom-right, are
actually the position of each camera in the room.

heat maps we could determine the position of the pointing
gesture for the robot in the imitation learning approach. For
example, when the robot decides to perform a pointing gesture
from motion cluster 24 and talk about ”mirrorless camera”,
we can use the hottest area in Fig. 5b as the position the
robot should point at. This should result in a robot action with
synchronized motion, speech, and environment reference. The
average distance between the hottest area on each heat map
and the actual position of the closest camera is 0.21 m, which
shows that our method can find the position of each camera.

Currently, we still need some minor human input of product
information (e.g. ”mirrorless camera” is a feature of Sony
camera) to generate the above heat maps. But our aim for
building the data-driven system is to find this kind of infor-
mation automatically from speech data. We will discuss more
of this part in our future works.

V. CONCLUSION

In this paper, we explained our current efforts toward a data-
driven approach for imitating human interactive motions. Our
main novel contribution is a method to find the environment
references for pointing gestures by combining motion and
speech data. The results obtained show that we are able to
find the environment references for pointing gestures.

In our future work, we intend to use the imitation learning
approach to train a neural network for decision-making for
our robot, in which the input of the neural network represents
the interaction state and the output is the shopkeeper action
used for the robot. Finally, we hope that our imitation learning
approach will reduce the cost of creating interactive motions
for social robots in different social situations.
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